
pyradigm Documentation
Release 0.4.1

Pradeep Reddy Raamana

Nov 05, 2017

Contents:

1 About 3
1.1 Background . 3
1.2 Context . 3

2 Installation 5
2.1 Requirements . 5

3 Usage examples 7

4 Constructor 11

5 Convenient attributes 15

6 Accessing samples 17

7 Iteration 19

8 Subject-wise tranform 21

9 Subset selection 23
9.1 Cross-validation . 25

10 Serialization 29

11 Dataset Arithmetic 31

12 Portability 33

13 API Reference 35

14 Indices and tables 41

Python Module Index 43

i

ii

pyradigm Documentation, Release 0.4.1

Pyradigm is a PYthon based data structure to ease and improve Dataset’s InteGrity in Machine learning workflows.

Contents: 1

pyradigm Documentation, Release 0.4.1

2 Contents:

CHAPTER 1

About

1.1 Background

A common problem for machine learning developers is keeping track of the source of the features extracted, and
to ensure integrity of the dataset (e.g. not getting data mixed up from different subjects and/or classes). This is
incredibly hard as the number of projects grow, or personnel changes are frequent. These aspects can break the chain
of hyper-local info about various datasets, such as where did the original data come from, how was it processed or
quality controlled, how was it put together, by who and what does some columns in the table mean etc. This package
aims to provide a Python data structure to encapsulate a machine learning dataset with key info greatly suited for
neuroimaging applications (or similar domains), where each sample needs to be uniquely identified with a subject
ID (or something similar). Key-level correspondence across data, labels (e.g. 1 or 2), classnames (e.g. ‘healthy’,
‘disease’) and the related attributes helps maintain data integrity. Moreover, attributes like free-text description help
annotate all the important information. The class methods offer the ability to arbitrarilty combine and subset datasets,
while automatically updating their description reduces burden to keep track of the original source of features.

Check the Usage examples and API Reference pages, and let me know your comments.

1.2 Context

For users of Pandas, some of the elements in pyradigm‘s API/interface may look familiar. However, the aim of this
data structure is not to offer an alternative to pandas, but to ease the machine learning workflow for neuroscientists by

1. offering several well-knit methods and useful attributes specifically geared towards neuroscience research,

2. aiming to offer utilities that combines multiple or advanced patterns of routine dataset handling and

3. using a more accessible language (compared to hard to read pandas docs aimed at econometric audience) to
better cater to neuroscience developers (esp. the novice).

Thanks for checking out. Your feedback will be appreciated.

3

http://pandas.pydata.org/

pyradigm Documentation, Release 0.4.1

4 Chapter 1. About

CHAPTER 2

Installation

Pyradigm can easily be installed with a single command:

pip install pyradigm

If you lack sudo access, try

pip install pyradigm --user

2.1 Requirements

• Packages: numpy

• Supported versions: 2.7, 3.5 and 3.6

5

pyradigm Documentation, Release 0.4.1

6 Chapter 2. Installation

CHAPTER 3

Usage examples

This class is greatly suited for neuroimaging applications (or any other domain), where each sample needs to be
uniquely identified with a subject ID (or something similar).

Key-level correspondence across data, labels (1 or 2), classnames (‘healthy’, ‘disease’) and the related helps maintain
data integrity and improve the provenance, in addition to enabling traceback to original sources from where the features
have been originally derived.

Just to given you a concrete examples, let’s look at how an ML dataset is handled traditionally.

You have a matrix X of size n x p, with n samples and p features, and a vector y containing the target values (or class
labels or class identifiers). This X and y serves as training (and test set) for a classifier like SVM to fit the data X to
match y as accurately as possible.

Let’s get a little more concrete:

import sys, os
import numpy as np
import matplotlib
%matplotlib
%matplotlib inline
import matplotlib.pyplot as plt

n = 10 # number of samples
p = 3 # number of features

X = np.random.random([n, p]) # random data for illustration
y = [1]*5 + [2]*5 # random labels ...

np.set_printoptions(precision=2) # save some screen space
print('X : \n{}'.format(X))
print('y : \n{}'.format(y))

Using matplotlib backend: TkAgg
X :
[[0.73 0.85 0.3]

7

pyradigm Documentation, Release 0.4.1

[0.63 0.09 0.87]
[0.14 0.71 0.19]
[0.25 0.33 0.08]
[0.8 0.85 0.99]
[0.78 0.76 0.47]
[0.25 0.54 0.18]
[0.57 0.98 0.36]
[0.1 0.1 0.74]
[0.16 0.76 0.53]]

y :
[1, 1, 1, 1, 1, 2, 2, 2, 2, 2]

Almost all the machine learning toolboxes take their input in this form: X and y, regardless of the original source that
produced these features in the first place.

This is all fine if all you ever wanted to do is to extract some features, do some machine learning and dispose these
features away!

** But this is almost never the case!**

Because it doesn’t simply end there.

At a minimum, I often need to know * which samples are misclassified - meaning you need to know what the identifiers
are and not simply their row indices in X? * what are the charecteristics of those samples? * what classes do they
belong to?

And all this info needs to be obtained * without having to write lots of code connecting few non-obvious links to
disparate sources of data (numerical features X, and sample identifiers in a CSV file) to find the relevant info * without
having to track down who or which method originally produced these features * how the previous personnel or grad
student organized the whole dataset, if you haven’t generated the features yourself from scratch

And if you are like me, you would be thinking about how would you organize your workflow such that the aforemen-
tioned tasks can be accomplished with ease.

This data structure attempts to accomplish that with ease. By always organizing the extracted features keyed-in into
a dictionary with their sample id, and other important info such as target values and other identified info. This, by
definition, preserves the integrity of the data (inability to incorrectly label samples etc).

No, this data structure doesn’t offer the full provenance tracking, which is quite a challenging problem. But it tries
make your life a little easier in your ML workflows.

An example application is shown below, touching upon the following topics:

• Motivation

• Constructing a dataset

• Attributes

• Accessing samples

• Iteration over samples

• Subset selection

• Saving/reloading a dataset (Serialization)

• Combining datasets and diving them into useful subsets

• Portability (e.g. with sklearn)

Improting the necessary modules and our fancy class definition:

8 Chapter 3. Usage examples

http://rrcns.readthedocs.io/en/latest/provenance_tracking.html

pyradigm Documentation, Release 0.4.1

from pyradigm import MLDataset

We can now instantiate it and give it a description:

dataset = MLDataset()
dataset.description = 'ADNI1 baseline: cortical thickness features from Freesurfer v4.
→˓3, QCed.'

dataset

ADNI1 baseline: cortical thickness features from Freesurfer v4.3, QCed.
Empty dataset.

You can see the dataset some description attached to it, however we know it is empty. This can be verified in a boolean
context as shown below:

bool(dataset)

False

Let’s add samples to this dataset which is when this dataset implementation becomes really handy. Before we do that,
we will define some convenience routines defined to just illustrate a simple yet common use of this dataset.

def read_thickness(path):
"""Dummy function to minic a data reader."""

in your actural routine, this might be:
pysurfer.read_thickness(path).values()
return np.random.random(2)

def get_features(work_dir, subj_id):
"""Returns the whole brain cortical thickness for a given subject ID."""

extension to identify the data file; this could be .curv, anything else you
→˓choose

ext_thickness = '.thickness'

thickness = dict()
for hemi in ['lh', 'rh']:

path_thickness = os.path.join(work_dir, subj_id, hemi + ext_thickness)
thickness[hemi] = read_thickness(path_thickness)

concatenating them to build a whole brain feature set
thickness_wb = np.concatenate([thickness['lh'], thickness['rh']])

return thickness_wb

So now we have IO routines to read the data for us. Let’s define where the data will come from:

work_dir = '/project/ADNI/FreesurferThickness_v4p3'
class_set = ['Cntrl', 'Alzmr', 'MCI']
class_sizes = [15, 12, 18]

This would obviously change for your applications, but this has sufficient properties to illustrate the point.

Let’s look at what methods this dataset offers us:

9

pyradigm Documentation, Release 0.4.1

dir(dataset)

['add_classes',
'add_sample',
'class_set',
'class_sizes',
'classes',
'data',
'data_and_labels',
'del_sample',
'description',
'extend',
'feature_names',
'get_class',
'get_feature_subset',
'get_subset',
'glance',
'keys',
'num_classes',
'num_features',
'num_samples',
'random_subset',
'random_subset_ids',
'random_subset_ids_by_count',
'sample_ids',
'sample_ids_in_class',
'save',
'summarize_classes',
'train_test_split_ids',
'transform']

That’s a lot of methods of convenience to organize and retrieve dataset.

So let’s go through them by their usage sections.

10 Chapter 3. Usage examples

CHAPTER 4

Constructor

You can see there few methods such as add_sample, get_subset etc: important method being add_sample,
which is key to constructing this dataset. Let’s go ahead and some samples:

To contruct a dataset, one typically starts with a list of subject IDs to be added - we create few random lists, each to
be considered as a separate class:

import random
from datetime import datetime
random.seed(datetime.now())

def read_target_list(class_name, class_size):
"Generates a random target list. In reality, you would do something like the

→˓commented code below."
target_list = list()
for idx in range(class_size):

target_list.append('{}{:04d}'.format(class_name[0],np.random.randint(1000)))

return target_list

Now we go through each of the above classes, and add each sample that class to the dataset.

for class_index, class_id in enumerate(class_set):
print('Working on class {:>5}'.format(class_id))

target_list = read_target_list(class_id,class_sizes[class_index])
for subj_id in target_list:

print('\t reading subject {:>15}'.format(subj_id))
thickness_wb = get_features(work_dir, subj_id)

adding the sample to the dataset
dataset.add_sample(subj_id, thickness_wb, class_index, class_id)

Working on class Cntrl
reading subject C0562
reading subject C0408

11

pyradigm Documentation, Release 0.4.1

reading subject C0760
reading subject C0170
reading subject C0241
reading subject C0980
reading subject C0822
reading subject C0565
reading subject C0949
reading subject C0041
reading subject C0372
reading subject C0141
reading subject C0492
reading subject C0064
reading subject C0557

Working on class Alzmr
reading subject A0034
reading subject A0768
reading subject A0240
reading subject A0042
reading subject A0141
reading subject A0888
reading subject A0032
reading subject A0596
reading subject A0969
reading subject A0215
reading subject A0074
reading subject A0229

Working on class MCI
reading subject M0760
reading subject M0434
reading subject M0033
reading subject M0942
reading subject M0034
reading subject M0868
reading subject M0595
reading subject M0476
reading subject M0770
reading subject M0577
reading subject M0638
reading subject M0421
reading subject M0006
reading subject M0552
reading subject M0040
reading subject M0165
reading subject M0256
reading subject M0127

Nice. Isn’t it?

So what’s nice about this, you say? The simple fact that you are constructing a dataset as you read the data in its most
elemental form (in the units of the dataset such as the subject ID in our neuroimaging application). You’re done as
soon as you’re done reading the features from disk.

What’s more - you can inspect the dataset in an intuitive manner, as shown below:

dataset

ADNI1 baseline: cortical thickness features from Freesurfer v4.3, QCed.
45 samples, 3 classes, 4 features.

12 Chapter 4. Constructor

pyradigm Documentation, Release 0.4.1

Class Cntrl : 15 samples.
Class Alzmr : 12 samples.
Class MCI : 18 samples.

Even better, right? No more coding of several commands to get the complete and concise sense of the dataset.

13

pyradigm Documentation, Release 0.4.1

14 Chapter 4. Constructor

CHAPTER 5

Convenient attributes

If you would like, you can always get more specific information, such as:

dataset.num_samples

45

dataset.num_features

4

dataset.class_set

['MCI', 'Cntrl', 'Alzmr']

dataset.class_sizes

Counter({'Alzmr': 12, 'Cntrl': 15, 'MCI': 18})

dataset.class_sizes['Cntrl']

15

If you’d like to take a look data inside for few subjects - shall we call it a glance?

dataset.glance()

{'C0170': array([0.37, 0.78, 0.5 , 0.79]),
'C0241': array([0.11, 0.18, 0.58, 0.36]),
'C0408': array([0.49, 0.38, 0.05, 0.82]),
'C0562': array([0.64, 0.59, 0.01, 0.8]),
'C0760': array([0.12, 0.51, 0.95, 0.23])}

15

pyradigm Documentation, Release 0.4.1

We can control the number of items to glance, by passing a number to dataset.glance() method:

dataset.glance(2)

{'C0408': array([0.49, 0.38, 0.05, 0.82]),
'C0562': array([0.64, 0.59, 0.01, 0.8])}

Or you may be wondering what are the subject IDs in the dataset.. here they are:

dataset.sample_ids

['C0562',
'C0408',
'C0760',
'C0170',
'C0241',
'C0980',
'C0822',
'C0565',
'C0949',
'C0041',
'C0372',
'C0141',
'C0492',
'C0064',
'C0557',
'A0034',
'A0768',
'A0240',
'A0042',
'A0141',
'A0888',
'A0032',
'A0596',
'A0969',
'A0215',
'A0074',
'A0229',
'M0760',
'M0434',
'M0033',
'M0942',
'M0034',
'M0868',
'M0595',
'M0476',
'M0770',
'M0577',
'M0638',
'M0421',
'M0006',
'M0552',
'M0040',
'M0165',
'M0256',
'M0127']

16 Chapter 5. Convenient attributes

CHAPTER 6

Accessing samples

Thanks to elegant implementation, data for a given sample ‘M0299’ can simply be obtained by:

dataset['M0040']

array([0.27, 0.52, 0.61, 0.49])

Like a Python dict, it raises an error if the key is not in the dataset:

dataset['dlfjdjf']

KeyError Traceback (most recent call last)

<ipython-input-22-4b19d52bac71> in <module>()
----> 1 dataset['dlfjdjf']

~/dev/pyradigm/pyradigm/pyradigm.py in __getitem__(self, item)
839 return self.__data[item]
840 else:

--> 841 raise KeyError('{} not found in dataset.'.format(item))
842
843 def __iter__(self):

KeyError: 'dlfjdjf not found in dataset.'

A more graceful handling would be to use dataset.get to control what value to be returned in case the requested
id is not found in the dataset.

dataset.get('dkfjd', np.nan)

17

pyradigm Documentation, Release 0.4.1

nan

18 Chapter 6. Accessing samples

CHAPTER 7

Iteration

Thanks to builtin iteration, we can easily iterate over all the samples:

for sample, features in dataset:
print("{} : {:>10} : {}".format(sample, dataset.classes[sample], features))

C0562 : Cntrl : [0.64 0.59 0.01 0.8]
C0408 : Cntrl : [0.49 0.38 0.05 0.82]
C0760 : Cntrl : [0.12 0.51 0.95 0.23]
C0170 : Cntrl : [0.37 0.78 0.5 0.79]
C0241 : Cntrl : [0.11 0.18 0.58 0.36]
C0980 : Cntrl : [0.1 0.52 0.79 0.68]
C0822 : Cntrl : [0.44 0.97 0.06 0.99]
C0565 : Cntrl : [0.89 0.5 0.89 0.48]
C0949 : Cntrl : [0.84 0.84 0.51 0.12]
C0041 : Cntrl : [0.07 0.19 0.68 0.81]
C0372 : Cntrl : [0.7 0.05 0.67 0.39]
C0141 : Cntrl : [0.46 0.18 0.69 0.17]
C0492 : Cntrl : [0.82 0.77 0.07 0.69]
C0064 : Cntrl : [0.24 0.54 0.36 0.37]
C0557 : Cntrl : [0.59 0.86 0.1 0.42]
A0034 : Alzmr : [0.35 0.96 0.41 0.93]
A0768 : Alzmr : [0.65 0.37 0.7 0.24]
A0240 : Alzmr : [0.87 0.78 0.1 0.28]
A0042 : Alzmr : [0.12 0.3 0.35 0.7]
A0141 : Alzmr : [0.85 0.28 0.06 0.74]
A0888 : Alzmr : [0.85 0.78 0.93 0.7]
A0032 : Alzmr : [0.28 0.41 0.61 0.09]
A0596 : Alzmr : [0.28 0.15 0.88 0.23]
A0969 : Alzmr : [0.47 0.37 0.52 0.58]
A0215 : Alzmr : [0.49 0.7 0.31 0.96]
A0074 : Alzmr : [0.87 0.7 0.37 0.7]
A0229 : Alzmr : [0.96 0.34 0.59 0.96]
M0760 : MCI : [0.27 0.22 0.37 0.14]
M0434 : MCI : [0.26 0.04 0.49 0.92]
M0033 : MCI : [0.14 0.39 0.71 0.5]

19

pyradigm Documentation, Release 0.4.1

M0942 : MCI : [0.19 0.29 0.42 0.46]
M0034 : MCI : [0.36 0.54 0.67 0.71]
M0868 : MCI : [0.29 0.46 0.47 0.83]
M0595 : MCI : [0.62 0.07 0.66 0.75]
M0476 : MCI : [0.73 0.97 0.59 0.24]
M0770 : MCI : [0.81 0.78 0.28 0.61]
M0577 : MCI : [0.84 0.86 0.94 0.5]
M0638 : MCI : [0.61 0.64 0.94 0.94]
M0421 : MCI : [0.73 0.16 0.97 0.69]
M0006 : MCI : [0.76 0.62 0.49 0.03]
M0552 : MCI : [0.26 0.85 0.13 0.31]
M0040 : MCI : [0.27 0.52 0.61 0.49]
M0165 : MCI : [0.03 0.79 0.92 0.79]
M0256 : MCI : [0.06 0.06 0.69 0.97]
M0127 : MCI : [0.42 0.11 0.93 0.5]

Did you see that? It’s so intuitive and natural! Such a clean traversal of dataset.

Thanks to the choice of the OrderedDict() to represent the data, classes and labels underneath, the order of sample
addition is retained. Hence the correspondence across samples in the dataset not only key-wise (by the sample id), but
also index-wise.

20 Chapter 7. Iteration

CHAPTER 8

Subject-wise tranform

Quite often, we are interested in computing some statistics on data for a given subject (such as mean, or ROI-wise
median). Typically this requires a loop, with some computation and organizing it in a new dataset! A simple routine
pattern of usage, but can’t avoided if you are still fiddling with representing your dataset in medieval matrices! :).

If you organized your dataset in a pyradigm, such computation is trivial, thanks to builtin implementation of
transform method. The mean value for each subject can be computed and organized in a new dataset, with an
intuitive and single line:

mean_data = dataset.transform(np.mean)
mean_data.description = 'mean values per subject'
mean_data

mean values per subject
45 samples, 3 classes, 1 features.
Class Cntrl : 15 samples.
Class Alzmr : 12 samples.
Class MCI : 18 samples.

As the transform accepts an arbitrary callable, we could do many more sophisticated things, such as access the subset
of features e.g. cortical thickness for a particular region of interest (say posterior cingulate gyrus).

let's make a toy function to return the indices for the ROI
def get_ROI_indices(x): return x[:3]

Using this “mask” function, we can easily obtain features for an ROI

pcg = dataset.transform(get_ROI_indices)

We can verify that the new dataset does indeed have only 3 features, for the same subjects/classes:

pcg

None
ADNI1 baseline: cortical thickness features from Freesurfer v4.3, QCed.

21

pyradigm Documentation, Release 0.4.1

45 samples, 3 classes, 3 features.
Class Cntrl : 15 samples.
Class Alzmr : 12 samples.
Class MCI : 18 samples.

pcg.num_features

3

Let’s make a bar plot with the just computed numbers:

data, lbl, keys = pcg.data_and_labels()

n, bins, patches = plt.hist(data)

docs/usage_files/usage_70_0.png

Remember as the original source of data was random, this has no units, property or meaning!

22 Chapter 8. Subject-wise tranform

CHAPTER 9

Subset selection

In addition to the structured way of obtaining the various properties of this dataset, this implementation really will
come in handy when you have to slice and dice the dataset (with large number of classes and features) into smaller
subsets (e.g. for binary classification). Let’s see how we can retrieve the data for a single class:

ctrl = dataset.get_class('Cntrl')

That’s it, obtaining the data for a given class is a simple call away.

Now let’s see what it looks like:

ctrl

Subset derived from: ADNI1 baseline: cortical thickness features from Freesurfer v4.
→˓3, QCed.
15 samples, 1 classes, 4 features.
Class Cntrl : 15 samples.

Even with updated description automatically, to indicate its history. Let’s see some data from controls:

ctrl.glance(2)

{'C0408': array([0.49, 0.38, 0.05, 0.82]),
'C0562': array([0.64, 0.59, 0.01, 0.8])}

We can also query a random subset of samples for manual inspection or cross-validation purposes. For example:

random_subset = dataset.random_subset(perc_in_class=0.3)
random_subset

Subset derived from: ADNI1 baseline: cortical thickness features from Freesurfer v4.
→˓3, QCed.
12 samples, 3 classes, 4 features.
Class Cntrl : 4 samples.

23

pyradigm Documentation, Release 0.4.1

Class Alzmr : 3 samples.
Class MCI : 5 samples.

You can see which samples were selected:

random_subset.sample_ids

['C0562',
'C0565',
'C0372',
'C0492',
'A0240',
'A0032',
'A0229',
'M0034',
'M0770',
'M0552',
'M0165',
'M0127']

You can verify that it is indeed random by issuing another call:

supplying a new seed everytime to ensure randomization
from datetime import datetime
dataset.random_subset(perc_in_class=0.3).sample_ids

['C0562',
'C0822',
'C0949',
'C0141',
'A0034',
'A0141',
'A0032',
'M0434',
'M0942',
'M0868',
'M0421',
'M0552']

Let’s see how we can retrieve specific samples by their IDs (for which there are many use cases):

data = dataset.get_subset(dataset.sample_ids[1:20])
data

Subset derived from: ADNI1 baseline: cortical thickness features from Freesurfer v4.
→˓3, QCed.
19 samples, 2 classes, 4 features.
Class Cntrl : 14 samples.
Class Alzmr : 5 samples.

So as simple as that.

24 Chapter 9. Subset selection

pyradigm Documentation, Release 0.4.1

9.1 Cross-validation

If you would like to develop a variant of cross-validation, and need to obtain a random split of the dataset to obtain
training and test sets, it is as simple as:

train_set, test_set = dataset.train_test_split_ids(train_perc = 0.5)

This method returns two sets of sample ids corresponding to training set (which 50% of samples from all classes in
the dataset) and the rest in test_set. Let’s see what they have:

train_set, test_set

(['C0760',
'C0822',
'C0565',
'C0170',
'C0562',
'C0141',
'C0041',
'A0768',
'A0888',
'A0032',
'A0969',
'A0141',
'A0034',
'M0434',
'M0421',
'M0577',
'M0256',
'M0127',
'M0033',
'M0760',
'M0476',
'M0165'],

['M0040',
'A0240',
'C0241',
'C0492',
'A0074',
'A0042',
'M0942',
'M0595',
'M0006',
'C0372',
'C0064',
'C0557',
'M0552',
'M0034',
'C0408',
'C0980',
'A0229',
'C0949',
'A0596',
'M0770',
'A0215',
'M0868',
'M0638'])

9.1. Cross-validation 25

pyradigm Documentation, Release 0.4.1

We can also get a train/test split by specifying an exact number of subjects we would like from each class (e.g. when
you would like to avoid class imbalance in the training set):

train_set, test_set = dataset.train_test_split_ids(count_per_class = 3)

Let’s see what the training set contains - we expect 3*3 =9 subjects :

train_set

['C0557',
'C0041',
'C0949',
'A0768',
'A0888',
'A0229',
'M0165',
'M0476',
'M0040']

We can indeed verify that is the case, by creating a new smaller dataset from that list of ids and getting a summary:

training_dataset = dataset.get_subset(train_set)
training_dataset

Subset derived from: ADNI1 baseline: cortical thickness features from Freesurfer v4.
→˓3, QCed.
9 samples, 3 classes, 4 features.
Class Cntrl : 3 samples.
Class Alzmr : 3 samples.
Class MCI : 3 samples.

Another programmatic way to look into different classes is this:

class_set, label_set, class_sizes = training_dataset.summarize_classes()
class_set, label_set, class_sizes

(['MCI', 'Cntrl', 'Alzmr'], [2, 0, 1], array([3., 3., 3.]))

which returns all the classes that you could iterative over.

Using these two lists, we can easily obtain subset datasets, as illustrated below.

dataset

ADNI1 baseline: cortical thickness features from Freesurfer v4.3, QCed.
45 samples, 3 classes, 4 features.
Class Cntrl : 15 samples.
Class Alzmr : 12 samples.
Class MCI : 18 samples.

binary_dataset = dataset.get_class(['Cntrl','Alzmr'])
binary_dataset

Subset derived from: ADNI1 baseline: cortical thickness features from Freesurfer v4.
→˓3, QCed.
27 samples, 2 classes, 4 features.

26 Chapter 9. Subset selection

pyradigm Documentation, Release 0.4.1

Class Cntrl : 15 samples.
Class Alzmr : 12 samples.

How about selecting a subset of features from all samples?

binary_dataset.get_feature_subset(range(2))

Subset features derived from:

Subset derived from: ADNI1 baseline: cortical thickness features from Freesurfer v4.
→˓3, QCed.
27 samples, 2 classes, 2 features.
Class Cntrl : 15 samples.
Class Alzmr : 12 samples.

Great. Isn’t it? You can also see the two-time-point history (initial subset in classes, followed by a subset in features).

9.1. Cross-validation 27

pyradigm Documentation, Release 0.4.1

28 Chapter 9. Subset selection

CHAPTER 10

Serialization

Once you have this dataset, you can save and load these trivially using your favourite serialization module. Let’s do
some pickling:

out_file = os.path.join(work_dir,'binary_dataset_Ctrl_Alzr_Freesurfer_thickness_v4p3.
→˓MLDataset.pkl')
binary_dataset.save(out_file)

That’s it - it is saved.

Let’s reload it from disk and make sure we can indeed retrieve it:

reloaded = MLDataset(filepath=out_file) # another form of the constructor!

reloaded

Subset derived from: ADNI1 baseline: cortical thickness features from Freesurfer v4.
→˓3, QCed.
27 samples, 2 classes, 4 features.
Class Cntrl : 15 samples.
Class Alzmr : 12 samples.

We can check to see they are indeed one and the same:

binary_dataset == reloaded

True

29

pyradigm Documentation, Release 0.4.1

30 Chapter 10. Serialization

CHAPTER 11

Dataset Arithmetic

You might wonder how can you combine two different types of features (thickness and shape) from the dataset. Piece
of cake, see below ...

To concatenat two datasets, first we make a second dataset:

dataset_two = MLDataset(in_dataset=dataset) # yet another constructor: in its copy
→˓form!

How can you check if they are “functionally identical”? As in same keys, same data and classes for each key... Easy:

dataset_two == dataset

True

Now let’s try the arithmentic:

combined = dataset + dataset_two

Identical keys found. Trying to horizontally concatenate features for each sample.

Great. The add method recognized the identical set of keys and performed a horiz cat, as can be noticed by the twice
the number of features in the combined dataset:

combined

45 samples, 3 classes, 8 features.
Class Cntrl : 15 samples.
Class Alzmr : 12 samples.
Class MCI : 18 samples.

We can also do some removal in similar fashion:

smaller = combined - dataset

31

pyradigm Documentation, Release 0.4.1

C0562 removed.
C0408 removed.
C0760 removed.
C0170 removed.
C0241 removed.
C0980 removed.
C0822 removed.
C0565 removed.
C0949 removed.
C0041 removed.
C0372 removed.
C0141 removed.
C0492 removed.
C0064 removed.
C0557 removed.
A0034 removed.
A0768 removed.
A0240 removed.
A0042 removed.
A0141 removed.
A0888 removed.
A0032 removed.
A0596 removed.
A0969 removed.
A0215 removed.
A0074 removed.
A0229 removed.
M0760 removed.
M0434 removed.
M0033 removed.
M0942 removed.
M0034 removed.
M0868 removed.
M0595 removed.
M0476 removed.
M0770 removed.
M0577 removed.
M0638 removed.
M0421 removed.
M0006 removed.
M0552 removed.
M0040 removed.
M0165 removed.
M0256 removed.
M0127 removed.

/Users/Reddy/dev/pyradigm/pyradigm/pyradigm.py:1169: UserWarning: Requested removal
→˓of all the samples - output dataset would be empty.
warnings.warn('Requested removal of all the samples - output dataset would be empty.

→˓')

Data structure is even producing a warning to let you know the resulting output would be empty! We can verify that:

bool(smaller)

False

32 Chapter 11. Dataset Arithmetic

CHAPTER 12

Portability

This is all well and good. How does it interact with other packages out there, you might ask? It is as simple as you
can imagine:

from sklearn import svm
clf = svm.SVC(gamma=0.001, C=100.)

data_matrix, target, sample_ids = binary_dataset.data_and_labels()
clf.fit(data_matrix, target)

SVC(C=100.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3, gamma=0.001, kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

There you have it, a simple example to show you the utility and convenience of this dataset.

Thanks for checking it out.

I would appreciate if you could give me feedback on improving or sharpening it further.

33

pyradigm Documentation, Release 0.4.1

34 Chapter 12. Portability

CHAPTER 13

API Reference

A tutorial-like presentation is available at Usage examples, using the following API.

class pyradigm.MLDataset(filepath=None, in_dataset=None, arff_path=None, data=None, la-
bels=None, classes=None, description=’‘, feature_names=None, en-
code_nonnumeric=False)

Bases: object

An ML dataset to ease workflow and maintain integrity.

add_classes(classes)
Helper to rename the classes, if provided by a dict keyed in by the orignal keys

classes [dict] Dict of class named keyed in by sample IDs.

TypeError If classes is not a dict.

ValueError If all samples in dataset are not present in input dict, or one of they samples in input is not
recognized.

add_sample(sample_id, features, label, class_id=None, overwrite=False, feature_names=None)
Adds a new sample to the dataset with its features, label and class ID.

This is the preferred way to construct the dataset.

sample_id [str, int] The identifier that uniquely identifies this sample.

features [list, ndarray] The features for this sample

label [int, str] The label for this sample

class_id [int, str] The class for this sample. If not provided, label converted to a string becomes its ID.

overwrite [bool] If True, allows the overwite of features for an existing subject ID. Default : False.

feature_names [list] The names for each feature. Assumed to be in the same order as features

ValueError If sample_id is already in the MLDataset (and overwrite=False), or If dimensionality of the
current sample does not match the current, or If feature_names do not match existing names

35

https://docs.python.org/2/library/functions.html#object

pyradigm Documentation, Release 0.4.1

TypeError If sample to be added is of different data type compared to existing samples.

classmethod check_features(features)
Method to ensure data to be added is not empty and vectorized.

features [iterable] Any data that can be converted to a numpy array.

features [numpy array] Flattened non-empty numpy array.

ValueError If input data is empty.

class_set
Set of unique classes in the dataset.

class_sizes
Returns the sizes of different objects in a Counter object.

classes
Identifiers (sample IDs, or sample names etc) forming the basis of dict-type MLDataset.

data
data in its original dict form.

data_and_labels()
Dataset features and labels in a matrix form for learning.

Also returns sample_ids in the same order.

data_matrix [ndarray] 2D array of shape [num_samples, num_features] with features corresponding row-
wise to sample_ids

labels [ndarray] Array of numeric labels for each sample corresponding row-wise to sample_ids

sample_ids [list] List of sample ids

del_sample(sample_id)
Method to remove a sample from the dataset.

sample_id [str] sample id to be removed.

UserWarning If sample id to delete was not found in the dataset.

description
Text description (header) that can be set by user.

dtype
number of features in each sample.

extend(other)
Method to extend the dataset vertically (add samples from anotehr dataset).

other [MLDataset] second dataset to be combined with the current (different samples, but same dimen-
sionality)

TypeError if input is not an MLDataset.

feature_names
Returns the feature names as an numpy array of strings.

get(item, not_found_value=None)
Method like dict.get() which can return specified value if key not found

36 Chapter 13. API Reference

pyradigm Documentation, Release 0.4.1

get_class(class_id)
Returns a smaller dataset belonging to the requested classes.

class_id [str] identifier of the class to be returned.

MLDataset With subset of samples belonging to the given class.

ValueError If one or more of the requested classes do not exist in this dataset. If the specified id is empty
or None

get_feature_subset(subset_idx)
Returns the subset of features indexed numerically.

subset_idx [list, ndarray] List of indices to features to be returned

MLDataset [MLDataset] with subset of features requested.

UnboundLocalError If input indices are out of bounds for the dataset.

get_subset(subset_ids)
Returns a smaller dataset identified by their keys/sample IDs.

subset_ids [list] List od sample IDs to extracted from the dataset.

sub-dataset [MLDataset] sub-dataset containing only requested sample IDs.

glance(nitems=5)
Quick and partial glance of the data matrix.

nitems [int] Number of items to glance from the dataset. Default : 5

dict

keys
Sample identifiers (strings) forming the basis of MLDataset (same as sample_ids)

static keys_with_value(dictionary, value)
Returns a subset of keys from the dict with the value supplied.

label_set
Set of labels in the dataset corresponding to class_set.

labels
Returns the array of labels for all the samples.

num_classes
Total number of classes in the dataset.

num_features
number of features in each sample.

num_samples
number of samples in the entire dataset.

random_subset(perc_in_class=0.5)
Returns a random sub-dataset (of specified size by percentage) within each class.

perc_in_class [float] Fraction of samples to be taken from each class.

subdataset [MLDataset] random sub-dataset of specified size.

37

pyradigm Documentation, Release 0.4.1

random_subset_ids(perc_per_class=0.5)
Returns a random subset of sample ids (of specified size by percentage) within each class.

perc_per_class [float] Fraction of samples per class

subset [list] Combined list of sample ids from all classes.

ValueError If no subjects from one or more classes were selected.

UserWarning If an empty or full dataset is requested.

random_subset_ids_by_count(count_per_class=1)

Returns a random subset of sample ids of specified size by count, within each class.

count_per_class [int] Exact number of samples per each class.

subset [list] Combined list of sample ids from all classes.

sample_ids
Sample identifiers (strings) forming the basis of MLDataset (same as keys).

sample_ids_in_class(class_id)
Returns a list of sample ids belonging to a given class.

class_id [str] class id to query.

subset_ids [list] List of sample ids belonging to a given class.

save(file_path)
Method to save the dataset to disk.

file_path [str] File path to save the current dataset to

IOError If saving to disk is not successful.

summarize_classes()
Summary of classes: names, numeric labels and sizes

tuple : class_set, label_set, class_sizes

class_set [list] List of names of all the classes

label_set [list] Label for each class in class_set

class_sizes [list] Size of each class (number of samples)

train_test_split_ids(train_perc=None, count_per_class=None)
Returns two disjoint sets of sample ids for use in cross-validation.

Offers two ways to specify the sizes: fraction or count. Only one access method can be used at a time.

train_perc [float] fraction of samples from each class to build the training subset.

count_per_class [int] exact count of samples from each class to build the training subset.

train_set [list] List of ids in the training set.

test_set [list] List of ids in the test set.

38 Chapter 13. API Reference

pyradigm Documentation, Release 0.4.1

ValueError If the fraction is outside open interval (0, 1), or If counts are outside larger than the smallest
class, or If unrecongized format is provided for input args, or If the selection results in empty subsets
for either train or test sets.

transform(func, func_description=None)

Applies a given a function to the features of each subject and returns a new dataset with other info un-
changed.

func [callable] A valid callable that takes in a single ndarray and returns a single ndarray. Ensure the
transformed dimensionality must be the same for all subjects.

If your function requires more than one argument, use functools.partial to freeze all the arguments
except the features for the subject.

func_description [str, optional] Human readable description of the given function.

xfm_ds [MLDataset] with features obtained from subject-wise transform

TypeError If given func is not a callable

ValueError If transformation of any of the subjects features raises an exception.

Simple:

from pyradigm import MLDataset

thickness = MLDataset(in_path='ADNI_thickness.csv')
pcg_thickness = thickness.apply_xfm(func=get_pcg, description = 'applying ROI
→˓mask for PCG')
pcg_median = pcg_thickness.apply_xfm(func=np.median, description='median per
→˓subject')

Complex example with function taking more than one argument:

from pyradigm import MLDataset
from functools import partial
import hiwenet

thickness = MLDataset(in_path='ADNI_thickness.csv')
roi_membership = read_roi_membership()
hw = partial(hiwenet, groups = roi_membership)

thickness_hiwenet = thickness.transform(func=hw, description = 'histogram
→˓weighted networks')
median_thk_hiwenet = thickness_hiwenet.transform(func=np.median, description=
→˓'median per subject')

pyradigm.cli_run()
Command line interface

This is the command line interface

• to display basic info about datasets without having to code

• to perform basic arithmetic (add multiple classes or feature sets)

39

pyradigm Documentation, Release 0.4.1

40 Chapter 13. API Reference

CHAPTER 14

Indices and tables

• genindex

• modindex

• search

41

pyradigm Documentation, Release 0.4.1

42 Chapter 14. Indices and tables

Python Module Index

p
pyradigm, 35

43

pyradigm Documentation, Release 0.4.1

44 Python Module Index

Index

A
add_classes() (pyradigm.MLDataset method), 35
add_sample() (pyradigm.MLDataset method), 35

C
check_features() (pyradigm.MLDataset class method), 36
class_set (pyradigm.MLDataset attribute), 36
class_sizes (pyradigm.MLDataset attribute), 36
classes (pyradigm.MLDataset attribute), 36
cli_run() (in module pyradigm), 39

D
data (pyradigm.MLDataset attribute), 36
data_and_labels() (pyradigm.MLDataset method), 36
del_sample() (pyradigm.MLDataset method), 36
description (pyradigm.MLDataset attribute), 36
dtype (pyradigm.MLDataset attribute), 36

E
extend() (pyradigm.MLDataset method), 36

F
feature_names (pyradigm.MLDataset attribute), 36

G
get() (pyradigm.MLDataset method), 36
get_class() (pyradigm.MLDataset method), 36
get_feature_subset() (pyradigm.MLDataset method), 37
get_subset() (pyradigm.MLDataset method), 37
glance() (pyradigm.MLDataset method), 37

K
keys (pyradigm.MLDataset attribute), 37
keys_with_value() (pyradigm.MLDataset static method),

37

L
label_set (pyradigm.MLDataset attribute), 37

labels (pyradigm.MLDataset attribute), 37

M
MLDataset (class in pyradigm), 35

N
num_classes (pyradigm.MLDataset attribute), 37
num_features (pyradigm.MLDataset attribute), 37
num_samples (pyradigm.MLDataset attribute), 37

P
pyradigm (module), 35

R
random_subset() (pyradigm.MLDataset method), 37
random_subset_ids() (pyradigm.MLDataset method), 37
random_subset_ids_by_count() (pyradigm.MLDataset

method), 38

S
sample_ids (pyradigm.MLDataset attribute), 38
sample_ids_in_class() (pyradigm.MLDataset method), 38
save() (pyradigm.MLDataset method), 38
summarize_classes() (pyradigm.MLDataset method), 38

T
train_test_split_ids() (pyradigm.MLDataset method), 38
transform() (pyradigm.MLDataset method), 39

45

	About
	Background
	Context

	Installation
	Requirements

	Usage examples
	Constructor
	Convenient attributes
	Accessing samples
	Iteration
	Subject-wise tranform
	Subset selection
	Cross-validation

	Serialization
	Dataset Arithmetic
	Portability
	API Reference
	Indices and tables
	Python Module Index

